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AdS and may have null singularity in the bulk. The dual gauge theory is also constructed

explicitly and is given by a time-dependent supersymmetric Yang-Mills theory living on

the boundary. Apart from the usual terms that are dictated by the geometry, our gauge

theory action features also a time-dependent axion coupling and a time-dependent gauge

coupling. Both of which are necessary due to the presence of a nontrivial dilaton and axion

profile in the supergravity solution. The proposal is supported by a precise matching in

the symmetries and functional dependence on the null coordinate of the two theories. As

applications, we show how the bulk Einstein equation may be reproduced from the gauge

theory. We also study and compare the behaviour of the field theory two-point functions.

We find that the two-point function computed by using duality is different from that by

doing a direct field theory computation. In particular the spacetime singularity is not seen

in our gauge theory result, suggesting that the spacetime singularity may be resolved in

the gauge theory.
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1. Introduction

The understanding of the fundamental nature and quantum properties of spacetime is one

of the most important questions for theoretical high energy physics. String theory is a

consistent theory of quantum gravity. As such, string theory should be able to provide

a satisfactory resolution for outstanding problems such as the entropy of a black hole,

spacelike singularity inside the horizon of a black hole and the big bang singularity in

the early universe. To achieve this, it is necessary to understand string theory on time-

dependent backgrounds [1]. Unfortunately time dependent backgrounds are difficult to

work with in general. An exceptional class of models which is simple enough to work with

and yet may provide a useful approach is the time-dependent orbifold model discussed first

by Horowitz and Steif [2]. In particular, the singularity properties of the string S-matrix

and the stability of the background against gravitational backreaction has been examined

understanding and treatment of the gravitational backreaction is crucial to establish reliable

string results. An understanding of string theory in time-dependent background is still

beyond the scope of traditional perturbative string theory.

Recently, powerful nonperturbative formulations of string theory, namely matrix the-

ory [9, 10] and AdS/CFT correspondence [11, 12], have been proposed and put forward.

It is natural to apply these ideas in the studies of time-dependent backgrounds, and try to

say something about the nature and fate of the spacetime singularity. Holographic descrip-

tion of time-dependent backgrounds via the AdS/CFT correspondence was considered in,
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for example, more recently in [17] where a big crunch cosmology was constructed and the

dual field theory description was examined. In an interesting proposal [18], a simple super-

symmetric time-dependent background with a null singularity is the holographic dual of a

matrix string theory. The time-dependence of the background is proposed to be encoded

through the time-dependent coupling of the gauge theory. Extensions and related works

can be found in [19]. Holographic description of cosmology in terms of matrix theory can

be found in [20].

As is usual in AdS/CFT correspondence, supersymmetry can be expected to play

an important role. The existence of supersymmetry allows us a better control over the

string/supergravity background and over the quantum and nonperturbative behaviour of

the field theory. In the construction of [17], the supergravity solution was constructed for a

class of boundary conditions preserving the asymptotically AdS symmetries. However su-

persymmetry is not preserved in that construction. On the other hand, in the proposal [18],

although the background is half BPS, the supersymmetry of the dual matrix string theory

is broken due to the presence of finite lightcone momentum.

Supersymmetric time-dependent background has been considered in earlier works. In

particular in [13], a time-dependent deformation of the pp-wave geometry has been con-

structed and the AdS/CFT correspondence considered. Although the background in these

works has pp-singularities [21], these singularities are situated at the horizon (u = ∞) and

as a result one can expect that their effects will be red-shifted away and will not show up in

the dual field theory [22]. This is indeed the case as confirmed by the calculations of [13].

Moreover these singularities are spacelike and are of different kind from the singularities

one would like to study in cosmology.

In this paper, we follow the line of AdS/CFT correspondence. We construct super-

symmetric IIB backgrounds which carry nontrivial dilaton and axion profiles. The dual

gauge theory is also constructed explicitly. The dual theory features a time-dependent

gauge coupling and a time-dependent axion coupling and is N = 2 supersymmetric, pre-

serving the same amount (1/4) of supersymetries as the supergravity (SUGRA) solution.

Our goal is to use the dual gauge theory to try to get a better understanding about string

theory in non-static spacetime and about the properties of spacetime singularity. On this,

we notice that by allowing nontrivial scalars profile, our SUGRA solution can admit not

just the usual pp-singularities (which are irrelevant for our studies), but also cosmological

type (to be precise, null-like) singularities. Moreover since these singularities are situated

at a constant x+, their presence can in principle be detected by quantities computed in

the dual field theory. For this purpose, we compare the field theory two-point functions

computed from two different methods: one computed using the bulk-boundary propagator

and the other computed directly from the field theory. We find that the two don’t agree.

In particular the SUGRA result is sensitive to the singularity of the spacetime, while the

gauge theory result does not see the singularity. That the results differ is not surprising

since the SUGRA result is valid in the regime where the t’Hooft coupling is large, while the

field theory result is valid when the t’Hooft coupling is small (in our case it is zero since

our computation is performed at the free level). As argued by [23], a field theory compu-

tation at weak coupling should still be valuable in capturing the singularity behaviour of
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the spacetime, even if only qualitative. Therefore our field theory result suggests that the

spacetime singularity as seen at the SUGRA level could be resolved by α′ effects of string

theory. A similar suggestion has also been reached at [23].

The paper is organized as follows. In section 2, we present our construction of the

time-dependent solution in type IIB supergravity. In section 3 we present our construction

of the time-dependent supersymmetric gauge theory and give justifications. In section 4, we

apply the duality and try to use gauge theory to learn about the dual spacetime properties.

In particular we compute the two-point functions and study their behaviour in relation to

spacetime singularity structure. We also show how the finiteness of the vacuum expectation

value (VEV) of the energy momentum tensor may allow us to derive the Einstein equations

in the bulk. We end in section 5 with a few remarks and further discussions.

2. Time-dependent deformation of AdS background

We are interested in generalizing the original Maldacena AdS/CFT correspondence to one

where the asymptotic AdS space is deformed to have nontrivial time-dependence. This

will be a new class of duality different from existing studies of time-dependent processes in

AdS/CFT correspondence. We will work with the extension of the AdS/CFT correspon-

dence for the type IIB case. It should be straightforward to generalize our analysis to the

11 dimensional AdS4 × S7 or AdS7 × S4 cases.

In this paper, we will consider solutions where the NSNS and RR 2-form potentials

vanish. Generalization to include nontrival 2-form potentials is possible. In Einstein frame,

the equations of motion for the bosonic fields are [24]

∇M (e2φ∇Mχ) = 0, (2.1)

∇M∇Mφ + e2φ∂Mχ∂Mχ = 0, (2.2)

eFM1···M5 = εM1···M5
L1···L5FL1···L5, (2.3)

RMN =
1

2
∂Mφ∂Nφ +

1

2
e2φ∂Mχ∂Nχ +

1

6
FL1···L4MFL1···L4

N . (2.4)

Here M,N = 0, 1, · · · , 9. e2 is the determinant of the metric gMN .

2.1 The solution

To solve (2.1) -(2.4) with non-trivial time-dependence, we will need to impose an appro-

priate ansatz. Since a time-dependence in the S5 part of the metric is harder to interpret

in the dual gauge theory, we will restrict ourselves in this paper to deformations only in

the AdS5 part of the metric. We start with the following ansatz (i = 2, 3),

ds2 =
R2

u2

(

−k2(x+)dx+dx− + h(u, x−, x+, xi)(dx+)2 + (dxi)2 + du2
)

+ R2dΩ2
5, (2.5)

Fµνρλσ =
1

R
εµνρλσ , Fabcde =

1

R
εabcde, for the AdS5-like and S5 part respectively, (2.6)

φ = φ(x+), χ = χ(x+), (2.7)

where the tangent space components of the 5-form is given in (2.6) and the functions

k, h, φ, χ are defined over the whole real axis. A couple of remarks follow. 1. We have
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chosen not to include any x+ dependence in front of the du2 term as we would like to

maintain the interpretation of u as the holographic energy scale, and a time dependence in

it would render it difficult for such an interpretation. 2. By a redefinition of x+, one can

normalize k to 1 generically. Here we leave the possibility of an explicit x+ dependence

in k. This will allow to include singular solutions which are geodesically incomplete (see

section 2.3) without having to introduce singularities in the metric. 3. Similar solutions

which are asymptotically AdS were studied before The major feature which distinguishes

our solution from existing solutions is that nontrivial (time-dependent) dilaton and axion

configurations are turned on in our solution1 2. This allows us to include solutions with

spacetime singularity in the bulk.

We now consider the equations of motion. The self-duality condition (2.3) is satisfied

by our ansatz. Also the equations (2.1) and (2.2) are trivially satisfied since the scalars

depend only on x+. For the Einstein equation (2.4), we note that the metric (2.5) has a

modified Ricci tensor whose nonvanishing components are given by

Ruu = R22 = R33 = − 4

u2
, (2.8)

R+− =
2k2

u2
− 1

k2
∂2
−h, R+I = − 1

k2
∂−∂Ih, I = 2, 3, u, (2.9)

R++ = −4h

u2
+

3∂uh

2u
+

2

k4
h∂2

−h − 1

2
(∂2

uh + ∂2
2h + ∂2

3h). (2.10)

It is easy to see that the Einstein equation (2.4) can be satisfied if h is of the form

h = h0 + h−x− +
∑

i

(

kix
i + hij xixj

)

+ luu2 + (l0 +
∑

i

li xi)u4, (2.11)

where all the coefficients h0, · · · , l3 above are functions of x+; and they satisfy

1

2
(φ′)2 +

1

2
e2φ(χ′)2 = −h22 − h33 + 2lu, (2.12)

which follows from the (++)-component of the Einstein equation. In [13], a nondilatonic

background was considered and solution with nonzero h22 = h33 = lu/2 and l0 was con-

structed. As is usual in the AdS/CFT correspondence,3 adding u-dependent parts in h that

do not change the value of h on the boundary u = 0 corresponds to the same boundary

theory in an excited state. It has been argued in [13] that this background is dual to a field

theory with a constant lightcone momentum density. In this paper we consider another

type of deformation which changes the boundary metric nontrivially. For this purpose, it

is sufficient to ignore the u-dependence in (2.11) and consider the ansatz

h = h0 + h−x− +
∑

i

(

kix
i + hijx

ixj
)

. (2.13)

1In [26], the dilaton is turned on for other branes but not the D3-brane which is the one related to our

solutions
2We thank Arkady Tseytlin for pointing out to us that our solution can be related to those in [27] by a

chain of duality relations and with dilaton and axion fields turned on.
3We recall that in the AdS/CFT correspondence, solutions in the bulk of AdS are matched with either

physical states or background deformations of the boundary theory according to their radial dependence.
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It is now straightforward to show that by performing a coordinate transformation of the

form

dx+ = f(x̃+)dx̃+, xi = x̃i + ai(x̃+), u = ũ, (2.14)

x̃− = f(x̃+)
(

x− + bi(x̃
+)x̃i

)

+ α̃(x̃+), (2.15)

one can turn h0, h−, ki to zero. Therefore it is sufficient to consider

h = hij(x
+)xixj (2.16)

for the metric and the Einstein equation reads

1

2
(φ′)2 +

1

2
e2φ(χ′)2 = −h22 − h33. (2.17)

Since h is independent of x−, our metric admits a null Killing vector ξ = ∂− and corresponds

to a pp-wave in AdS. Time-dependent solutions with a null Killing vector has also been

constructed in string theory, see for example [28] for some recent discussions.

The metric (2.5) is written in the “Brinkman form”, one can bring it to the“Rosen

form”

ds2 =
R2

u2



−k2(y+)dy+dy− +
∑

ij

aij(y
+)dyidyj + du2



 + R2dΩ2
5 (2.18)

by performing a coordinate transformation. In this form, the metric depends only on the

coordinate y+. Unlike x+ above, y+ is null. The coordinate transformation is complicated

in general. However it simplifies in the particular case of h23 = 0, which is equivalent

to a23 = 0. Writing aij = M2
i δij , the two coordinate systems are then related by the

transformation

x+ = y+, xi = Mi(x
+)yi, x− = y− +

∑

i

1

k2
M ′

iMi(y
i)2 (2.19)

and the functions hi are related to Mi by

hi =
M ′′

i

Mi
− 2k′M ′

i

kMi
, i = 2, 3. (2.20)

The Ricci curvature for the modified AdS part (M,N = +,−, 2, 3, u) is given by,

RMN = − 4

u2
gMN + R++δM+δN+, (2.21)

where R++ is given by an expression involving aij and their derivatives up to the second

order. The expression is a little more complicated and we don’t record it here. Again the

(++)-component of the Einstein equation gives 1
2(φ′)2 + 1

2e2φ(χ′)2 = R++ similar to (2.17),

and presents a constraint among aij, φ and χ. For the particular case of h23 = a23 = 0, we

have

R++ = −
∑

i=2,3

(

M ′′
i

Mi
− 2k′M ′

i

kMi

)

. (2.22)
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We note that our supergravity solution is invariant under a scaling transformation of

the following form:

u → λu, x+ → x+, x− → λ2x−, xi → λxi. (2.23)

This scaling symmetry will play a significant role in the dual gauge theory.

Before we move on, we remark that the above construction can be obtained from a

suitable near horizon limit of D3-brane solutions. Consider an ansatz of the following form

ds2 = H−1/2
(

−k2(x+)dx+dx− + h(r, x+, xi)(dx+)2+(dxi)2
)

+H1/2(dr2 + r2dΩ2
5), (2.24)

F5 = G5 + ∗G5, where G5 =
k2

4
d(H−1) ∧ dx+ ∧ dx− ∧ dx2 ∧ dx3, (2.25)

φ = φ(x+), χ = χ(x+), (2.26)

where

H = 1 +
R4

r4
, for arbitrary constant R (2.27)

One can check that the type IIB SUGRA equations of motion are satisfied if

−1

2
H−1

(

∂2
r h +

5

r
∂rh

)

− 1

2
(∂2

2 + ∂2
3)h =

1

2
(φ′)2 +

1

2
e2φ(χ′)2. (2.28)

This can be satisfied if h takes the form (2.16) and obeys (2.17). Our solution above for

pp-wave in AdS can be obtained from this solution by taking a near horizon limit r → 0

and identify u = R2/r. The solution (2.24)-(2.26) describes a stack of D3-branes with a

pp-wave on it.

2.2 Supersymmetry

We now show that our solution preserves 1/4 of the IIB supersymmetry [24]. The preserved

supersymmetry is determined by the vanishing of the variations of the spinor δλ and the

gravitino δψM . For our solutions where the RR and NSNS 2-form potentials are zero, we

have

0 = δλ = iγM ε∗PM , 0 = δψM =

(

DM − i

2
QM

)

ε +
i

480
FP1···P5γ

P1···P5γM ε. (2.29)

Here PM and QM are currents defined by PM = −εαβV α
+ ∂MV β

+ , QM = −iεαβV α
−∂MV β

+ ,

where V α=1,2
± is a 2× 2 matrix of the scalar fields which satisfies εV α

−V β
+ = 1 and V α

−V β
+ −

V α
+ V β

− = εαβ . In (2.29), DM = ∂M + 1
4ωM

ABΓAB is the covariant derivative, ωM
AB is the

spin connection matrix. ΓA and γM = EM
A ΓA are the Γ matrices in the tangent space

and coordinate basis respectively: {γM , γN} = 2gMN , {ΓA,ΓB} = 2ηAB .

To verify the supersymmetry, it is convenient to perform a change of coordinate u = e−r

and use the orthonormal basis

Er = dr, E+ = erdx+, E− = er(k2dx− − hdx+), Ei = erdxi, i = 2, 3.

(2.30)
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We are choosing the units so that R = 1 for simplicity. The metric takes the form

ds2 = ηABEAEB , where η+− = η−+ = −1/2, η22 = η33 = ηrr = 1. (2.31)

The nonvanishing components of the spin connection ωAB (dEA+ωA
BEB = 0) are given by

ω+r = −ωr+ = E+, ω−r = −ωr− = E− − ∂rhE+, ωir = −ωri = Ei,

ωi− = −ω−i = e−r∂ihE+, ω+− = −ω−+ =
2e−r

k2
(∂−h + 2kk′)E+. (2.32)

Here we have given the results for the general case of the metric (2.5) where h is allowed

to depend on r and x−, although this is not the case for the solutions we construct in this

paper.

Now we examine the supersymmetry conditions (2.29) for our solution. Since the

scalars in our solution are functions of x+, the only nonvanishing components of PM , QM

are P+, Q+. The condition δλ = 0 reads

γ+ε = γ−ε = 0, or, equivalently Γ+ε = Γ−ε = 0. (2.33)

Due to this condition, the modification of k and h in the spin connection (2.32) never

appears since a Γ− is always attached and will give zero upon hitting ε. As a result, the

equation (2.29) reads the same as in the undeformed AdS5 × S5 case. The AdS5 part of it

gives

∂−ε = 0,

(

∂+ − i

2
Q+ − er

2
Γ+(1 − Γr)

)

ε = 0, (2.34)

(

∂r −
1

2
Γr

)

ε = 0,

(

∂i −
er

2
Γi(1 − Γr)

)

ε = 0. (2.35)

These are satisfied if

ε = er/2ε+
0 , where Γrε±0 = ±ε±0 (2.36)

for the constant spinors ε±0 . This is just the usual Poincare supersymmetries of AdS, but

with the extra condition (2.33) imposed. It is easy to see that the “AdS-supersymmetry”

ε = (er/2 + e−r/2x/ )ε−0 for the standard AdS5 ×S5 is broken since it is not compatible with

(2.33). Thus our solution preserves 8 supersymmetries of the form ε = er/2ε+
0 satisfying

Γ+ε = (1 − Γr)ε = 0.

In the above we have assumed that, given that the metric is nontrivially dependent on

x+, the scalars also depend on x+ nontrivially. However there is an interesting exception.

Consider the case with

h22 = −h33. (2.37)

In this case, the dilaton and axion are constant. Although the currents are now PM =

QM = 0 and there is no need to impose γ+ε = 0 in order for δλ = 0, this condition is

needed in order to solve δψM = 0. The solution is 1/4 BPS as before.

The next simplest example of our solutions is a linear dilaton background

φ =
√

−2(h22 + h33)x
+, χ = 0, (2.38)

where h22 + h33 is a constant.
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2.3 Singularity: geodesic incompleteness

An interesting feature of our supergravity solutions is that all gauge invariant quantities

constructed out of the curvature tensor and the metric are regular. This does not mean

that there is no singularity of any kind in our solutions. For example, a divergence in the

dilaton or axion is still a singularity. This happens whenever the component R++ of the

Ricci tensor has a singularity according to (2.17). In general a spacetime is singular if it

is geodesically incomplete and cannot be embedded in a larger spacetime [29]. We will

now demonstrate that our solutions include situation where there can be a singularity in

the bulk. This is in contrast to those solutions constructed in e.g. [13, 21, 22]. For the

following analysis, it is more convenient to consider the Rosen form (2.18) of the metric.

We first claim that if we choose k = 1 by redefining the coordinate y+, then a singularity

in R++ also signifies geodesic incompleteness. The reason is that the curve defined by

y+ = λ, yM = constant ∀ M 6= + (2.39)

is a geodesic with the affine parameter λ ∈ R
4. On this geodesic,

RMN
dyM

dλ

dyN

dλ
= R++ (2.40)

is invariant under general coordinate transformations. Thus a divergence of R++ implies

that the geodesic has to be terminated there and the geodesic is incomplete. A simple

example is:

φ = ±2
√

α(1 − α) log(y+), χ = 0, M2 = M3 = (y+)α, a23 = 0, k = 1. (2.41)

Another example is

φ = φ0, χ = ±2
√

α(1 − α)e−φ0 log(y+), M2 = M3 = (y+)α, a23 = 0, k = 1.

(2.42)

where y+ > 0 and 0 < α < 1 in both cases and φ0 is a constant. From (2.22), we have a

singularity at y+ = 0

R++ =
2α(1 − α)

(y+)2
. (2.43)

Note that there is a vanishing scale factor resembling the big bang.

Via a coordinate transformation of y+, which results in a nontrivial function k in the

metric, it is possible to push the singularity to the coordinate infinity, so that all the fields in

our solution appear to be smooth functions. For example, the above singularity at y+ = 0

may be pushed to the infinity y+
new → −∞ in terms of the new coordinate y+

new = log y+.

Simultaneously we have k2 = 1 → k2 = ey+
new . This is why we claimed earlier that by

allowing nontrivial k to appear in the g+− component of our metric, one has the possibility

to include singular spacetime which is geodesically incomplete even if all the fields (the

dilaton, axion and all functions defining the metric) are seemingly regular functions.

4The lines y− = λ, yM = constant for all M 6= − , also form a family of null geodesics. Since our metric

is independent of y−, it is not very interesting to follow the flow of this kind of geodesics.
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In general, let us consider the geodesic equation for the case of a nontrivial k

d2y+

dλ2
+ Γ+

++

dy+

dλ

dy+

dλ
= 0, where Γ+

++ = 2k′/k. (2.44)

Up to a constant normalization of the affine parameter λ, this gives

dy+

dλ
= 1/k2. (2.45)

This implies a monotonic relation between λ and y+ and could demand λ to be terminated

at a finite value. Moreover the gauge invariant curvature defined along the geodesic is

Rλλ(λ) ≡ Rµν
dyµ

dλ

dyν

dλ
=

1

k4
R++

∣

∣

∣

y+=y+(λ)
. (2.46)

Even if all scalar profiles are smooth and so R++ is nonsingular for all y+ ∈ R, Rλλ can

be singular at finite λ if k approaches to zero somewhere. In this case the spacetime is

geodesic incomplete and has a curvature singularity. On the other hand, if we choose the

coordinates with k = 1, and all the fields are smooth functions, the solution is free from

any singularity in the bulk. (At the horizon u = ∞, there still exists pp-singularity as

discussed above.)

In the above we have considered the metric in the Einstein frame. The string metric

gs
MN differs from the Einstein metric gMN by a factor depending on the dilaton field

g
(s)
MN = eφ/2gMN . (2.47)

Since the dilaton is in general a nontrivial function, it may happen that a singularity in the

Einstein frame disappears in the string frame. This is a very interesting situation because

the string is now coupled to a nonsingular metric and if there is no other singularity,

e.g. in the dilaton, then the theory should be well defined. Taking advantage of this, a

nonperturbative matrix string formulation has been proposed recently to describe a null

cosmological singularity in the Einstein frame while in the string frame it is a flat metric

with a linear dilaton background [18].

Interestingly, our solutions also include geometry of this kind. An explicit example is

that the Einstein frame metric is given by (2.18) with aij = δijM
2 and

k2 = M2 = e−φ/2 =
(y+

y+
0

)2/3
. (2.48)

The affine parameter is λ = 3(y+)5/3/5 and the gauge invariant curvature is Rλλ =
8
9 (y+

y+
0

)−
10
3 . The metric is singular at y+ = 0 and corresponds to the λ = 0. The cor-

responding string metric is just the undeformed AdS5 ×S5 and is regular. Other examples

are also possible.

In conclusion we have shown that our class of solutions is general enough to include

both regular and singular spacetime. Moreover it includes spacetimes that are singular in

the Einstein frame but regular in the string frame. This kind of spacetime is of interest for

the studies of big bang cosmology. In the next section, we give a candidate supersymmetric

gauge theory that we propose to be dual to our supergravity solution in general. We

emphasis that this includes also the singular case.
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3. Time-dependent supersymmetric Yang-Mills theory

Due to the form of our SUGRA metric, it is clear that the boundary manifold is equipped

with a natural conformal structure but not a natural metric. According to [30], it is

plausible that there is a correspondence between the conformal theory on the boundary

and quantum gravity in the bulk. However the precise form of the boundary theory was

not given. In this section, we will construct the dual theory directly. The dual theory

we construct is a time-dependent Yang-Mills theory with precisely the same amount of

functional dependence on x+ and the same amount of supersymmetries as our supergravity

solution. We remark that the work of [31] considered super Yang-Mills theory on a generic

curved spacetime with Killing spinors. Here we have a specific choice of the metric but our

action is more general in that we will allow for a time-dependent Yang-Mills coupling and

also we will introduce a non-topological axion term to the action. Both are necessary since

our SUGRA solution has a nontrivial dilaton and axion background.

3.1 Construction

The N = 4 super Yang-Mills theory can be understood as the dimensional reduction of the

10 dimensional super Yang-Mills theory. Its action is

S =
1

g2
Y M

∫

d4xTr

(

−1

4
FMNFMN − 1

2
Ψ̄ΓM [DM ,Ψ]

)

, (3.1)

where Ψ is a 10D Majorana-Weyl spinor and

FMN = i[DM ,DN ], DM =

{

∂µ − iAµ (µ = 0, 1, 2, 3),

−iAa (a = 4, · · · , 9).
(3.2)

The action is invariant under the supersymmetry (SUSY) transformation

δAM =
1

2
ε̄ΓMΨ, δΨ = −1

4
FMNΓMNε (3.3)

for both ε = η (Poincare SUSY) and ε = xµΓµη (conformal SUSY), where η is an arbitrary

constant Majorana-Weyl spinor, and ΓMN = 1
2 [ΓM ,ΓN ]. We use the convention that

ηMN = diag(−1, 1, · · · , 1).

For compassion with our supergravity solution, we can also go to the lightcone coor-

dinate. Define

Γ± =
1

2
(Γ0 ± Γ1) (3.4)

so that

{Γ+,Γ−} = −1. (3.5)

The Minkowski metric has η+− = η−+ = −1/2. Using (3.5), we note that a generic fermion

Ψ can always be decomposed as

Ψ = Ψ+− + Ψ−+, (3.6)
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where

Ψ+− = −Γ+Γ−Ψ, Ψ−+ = −Γ−Γ+Ψ. (3.7)

In view of the supersymmetry preserved by our supergravity solution, we look for super-

symmetric Yang-Mills theories (SYM) preserving the supersymmetry for ε being a constant

10D Majorana-Weyl spinor satisfying

Γ−ε = 0. (3.8)

In this case, the SUSY transformation parameter satisfies

Γ−Γ+ε = −ε. (3.9)

Let us start by rewriting the original SYM action (3.1) for a curved base space:

S0 =

∫

d4x(L0B + L0F ), (3.10)

where

L0B = fBTr

[

−1

4
g̃MM ′

g̃NN ′

FMNFM ′N ′

]

, (3.11)

L0F = fF Tr

[

−1

2
Ψ̄γM [DM ,Ψ]

]

. (3.12)

Since the base space is curved, the covariant derivative DM also includes the spin connection

when it acts on Ψ. The functions fB and fF are assumed to be functions of x+ only. We

will match fB with the factor
√
−g

g2
Y M

, where both the measure
√−g and Yang-Mills coupling

gY M are time-dependent functions. Naturally we also deform the SUSY transformation

(3.3) to include two functions fA(x+) and fΨ(x+)

δAM =
1

2
fAε̄γMΨ, δΨ = −1

4
fΨFMNγMNε (3.13)

For the parameter ε satisfying (3.8), these can be written in more detail as

δA− = 0, (3.14)

δA+ =
1

2
fAε̄γ+Ψ−+, (3.15)

δAm =
1

2
fAε̄γmΨ+− for m = 2, 3, · · · , 9, (3.16)

δΨ+− = −fΨF−mγmγ+ε, (3.17)

δΨ−+ = fΨ



F−+ − 1

4

9
∑

m,n=2

Fmnγmn



 ε. (3.18)

We will use indices M,N = +,−, 2, 3, . . . , 9, and indices m,n = 2, 3, . . . , 9. Below we will

also use i, j = 2, 3 and a, b = 4, 5, . . . , 9.

Choose the metric of the base space to be of the form

ds2 = g̃µνdxµdxν = −k̃2dx+dx− + h̃dx+dx+ + dxidxi. (3.19)
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We remark that, here we use g̃µν , k̃, h̃ to denote quantities in the Yang-Mills theory, in

order to distinguish them from the SUGRA quantities: gµν , k, h. For the vielbein, we take

E− = k̃2dx− − h̃dx+, EM = dxM for M 6= −, (3.20)

where we have extended the definition of the vielbein to the indices a = 4, · · · , 9, so that

we can define

γM = EM
AΓA. (3.21)

We have {γM , γN} = 2g̃MN . A different choice of vielbein is possible and corresponds to

a different choice of the spin connection. For our choice, the spin connection can be easily

read off from (2.32) by setting r = dr = 0.

One can check that the variation of the action (3.10) for a generic base space is

δS0 =

∫

d4x Tr
[

−1

2
ε̄
(1

4
fΨγMN [DK , fF γK ]Ψ + fB[DM , fAγN ]Ψ

+(fF fΨ − fBfA)γM [DN ,Ψ]
)

FMN
]

. (3.22)

For our choice of the vielbein (3.20), both terms vanish for ε satisfying (3.8) if

fBfA − fF fΨ = 0, fBf ′
A − f ′

F fΨ = 0. (3.23)

When the coupling is constant [31], we can choose fB = fF =
√−g/g2

Y M and fA = fΨ =√−g. In our case the coupling gY M is not a constant, by convention we identify fB with√−g/g2
Y M . (This is how one defines g2

Y M ). Note that one can scale Ψ by an arbitrary

function of x+. In particular we can scale Ψ such that fF is equal to fB. This implies that

fA equals fΨ and so the solution is

fB = fF = fA = fΨ =

√−g

g2
Y M

(3.24)

up to scaling fA and fΨ by a constant, which is equivalent to scaling ε. We see that the

super Yang-Mills theory can have a generic coupling function gY M depending on x+.

There is an additional term invariant under the same SUSY transformation

Lχ = χ̃(x+)Tr

(

1

4
εµνρσFµνFρσ +

1

2

fA

fΨ
Ψ̄+−Γ2Γ3Γ−Ψ+−

)

, (3.25)

where εµναβ is the totally antisymmetrized tensor with ε+−23 = 1. It is not hard to show

that under the variations (3.14)–(3.18), L2 is invariant for an arbitrary function χ̃(x+).

In conclusion, a super Yang-Mills Lagrangian invariant under the transformation (3.14)–

(3.18) is

L = L0B + L0F + Lχ. (3.26)
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Explicitly, the total action is

S =

∫

d4x

√−g

g2
Y M

Tr

[

2k̃−4F 2
+− + 2k̃−2F+iF−i −

1

2
F 2

23

+2k̃−2[D−,Xa][D+,Xa] −
1

2
[Di,Xa]

2 +
1

4
[Xa,Xb]

2

−4k̃−4h̃(x+, x2, x3)

(

1

2
F 2
−i +

1

2
[D−,Xa]

2

)

]

+

∫

d4x

√−g

g2
Y M

Tr

[

Ψ̄−+Γ+[D−,Ψ−+]+Ψ̄+−k̃2Γ−[D+,Ψ+−]− 1

2
Ψ̄Γi[Di,Ψ]+

i

2
Ψ̄Γa[Xa,Ψ]

+k̃−4h̃(x+, x2, x3)Ψ̄+−k̃2Γ−[D−,Ψ+−]

]

+

∫

d4x Tr

[

χ̃(x+)

(

1

4
εµνρσFµνFρσ +

1

2
Ψ̄+−Γ2Γ3Γ−Ψ+−

)

]

. (3.27)

In the above, we have denoted Aa as Xa and i = 2, 3, a = 4, · · · , 9. This action is

invariant under the 8 supersymmetries of (3.14) - (3.18). One can verify that the conformal

supersymmetry are all broken. Thus our theory preserves 8 supersymmetries.

The above is for general h̃. We note that if the function h̃ is bilinear in x2, x3:

h̃(x+, x2, x3) = h̃ij(x
+)xixj , (3.28)

then our action (3.27) enjoys the scaling symmetry:

x+ → x+, x− → λ2x−, xi → λxi, (3.29)

Γ+ → λΓ+, Γ− → λ−1Γ−, Γi → Γi, Γa → Γa, (3.30)

A+ → A+, A− → λ−2A−, Ai → λ−1Ai, Xa → λ−1Xa, Ψ → λ−3/2Ψ,

since h̃ scales like

h̃(x+, x2, x3) → λ2h̃(x+, x2, x3) (3.31)

in this case. This symmetry is also a symmetry of the original AdS/CFT background since

it can be viewed as a combination of the usual scaling symmetry

xµ → λxµ (3.32)

and the Lorentz boost in the x1 direction

x+ → λ−1x+, x− → λx−, xi → xi. (3.33)

However the full scaling symmetry (3.32) is broken in our case and only the partial scaling

symmetry is respected by our solution.
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3.2 Born-Infeld analysis

In this section, we propose, and give further justification, that the time-dependent SYM

theory we constructed in section 3.1 is dual to the the string theory based on the time-

dependent IIB background we constructed in section 2.

Our proposal is that the time-dependent SYM theory (3.10) with Yang-Mills coupling

given by

g2
Y M = gs ≡ eφ (3.34)

and h̃ given by (3.28) provides a dual description of the string theory based on the time-

dependent IIB background (2.5)-(2.7) with h given by (2.16). Moreover we propose the

following identification:

h = h̃, χ = χ̃, k = k̃. (3.35)

We remind the reader again that the left hand side are SUGRA quantities and the right

hand side are SYM quantities.

Let us now explain and justify our proposal. Consider a single D3-brane in our super-

gravity background. The D3-brane action is given by the DBI action plus a coupling to

the RR gauge fields

S = −µ3

∫

d4xe−φ [− det (Gµν + Fµν)]1/2 +

∫

C ∧ eF , (3.36)

where

Fµν ≡ Bµν + 2πα′Fµν , (3.37)

C = C(0) + C(2) + · · · , (3.38)

are the RR gauge fields, and

Gµν =
∂XM

∂xµ

∂XN

∂xν
g
(s)
MN , Bµν =

∂XM

∂xµ

∂XN

∂xν
BMN (3.39)

are the pull back to D3-brane worldvolume of the spacetime metric in the string frame and

the NSNS B-field.

By performing a weak field expansion, we have

SDBI = −µ3(2πα′)2
∫

d4xe−φ
√

− det(Gµν)

(

−1

4
Fµµ′Fνν′GµνGµ′ν′

+ · · ·
)

, (3.40)

where · · · denotes higher order terms in FG−1. Now let us consider a D3-brane placed at

u = u0 and extends in the +,−, 2, 3 directions. Take a static gauge

xµ = Xµ, µ = +,−, 2, 3. (3.41)

We have

Gµν =
R2

u2
0

eφ/2ĝµν , (3.42)
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where

ĝµν =











h −k2/2 0 0

−k2/2 0 0 0

0 0 1 0

0 0 0 1











. (3.43)

Substituting into (3.40), we have

SDBI = −µ3(2πα′)2
∫

d4x

[

−1

4

√

ĝe−φFµµ′Fνν′ ĝµν ĝµ′ν′

]

+ · · · . (3.44)

This is precisely the form of the SYM action (3.10) by identifying the string coupling with

the Yang-Mills coupling in the usual way

eφ = g2
Y M , (3.45)

and identifying g̃µν of (3.19) with ĝµν here. The later implies that

k̃ = k, h̃ = h. (3.46)

Moreover since in our case B = 0 and there is only the C(0) RR field, the RR coupling

reduces to
∫

C(0)F ∧F and can be identified with the SYM piece
∫

Lχ directly. Therefore

we find that the weak field expansion of the bosonic D3-brane action produces precisely

our time-dependent SYM theory. We remark that the higher order terms in (3.44) vanish

as we take u0 → 0.

This justifies our choice (3.34) and our identification (3.35) for the functions which ap-

pear in our supergravity solution and in our SYM Lagrangian. For N D3-branes the action

is given by the nonabelian generalization of (3.44). Our action (3.27) is the supersymmetric

completion of it.

For the duality to be precise, we still need to determine the radius R of the SUGRA

solution in terms of gauge theory parameters. Recall that our SUGRA solution can be

obtained as a near horizon limit of the SUGRA solution for a stack of D3-branes with

pp-wave on it. Consider a stack of N such D3-branes. If one equates the mass and charge

of the D-brane, one obtain that

R4 = 16πN〈g−1
s 〉−1l4s (3.47)

where 〈g−1
s 〉 :=

∫

dx+k̃2e−φ/
∫

dx+k̃2 is the x+-average of the inverse of the string coupling

gs = eφ.

Provided that 〈g−1
s 〉 is well defined, we propose that the time-dependent SYM theory

is dual to the quantum gravity in the bulk with R given by (3.47). For instance, 〈g−1
s 〉 is

well defined for the example (2.42). Our proposal is supported by a number of matchings.

First we see that there is a precise matching between the functional dependence on x+ of

the two theories. We will also explain in section 4.2 how the Einstein equation (4.40) is

realized as a constraint in the SYM theory. Furthermore, our theories also match in their

various symmetries. The SYM action (3.10) enjoys a global SO(6) invariance rotating
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the six scalars. This is mapped to the rotational symmetry of the S5 on the supergravity

side. Supersymmetry also matches. Both theories observe 8 supersymmetries, and these

unbroken supersymmetries satisfy the same chirality condition Γ+ε = 0. Moreover, as

we noted above, both the supergravity solution and the SYM action observe a scaling

symmetry (2.23) and (3.29).

While the matching between the weak field expansion of the DBI action with the

super Yang-Mills theory only makes sense in the low energy limit, it is possible that the

identification of parameters (3.34) and (3.35) between the type IIB string theory and super

Yang-Mills theory could be modified by higher derivative terms in the α′ expansion. The

matching of parameters including higher order terms can in principle be achieved order

by order by comparing the type IIB stringy corrections to the supergravity equations of

motion with the quantum corrections of super Yang-Mills theory via a similar calculation

as the one carried out in section 4.2 but to a higher order.

4. Holographic duality

4.1 Two-point correlation functions and singularity structures

In AdS/CFT duality, the action of fluctuations in AdS space with specified boundary

conditions is matched with correlation functions of the corresponding operators. As a

result, the boundary bulk propagator in AdS should agree with the corresponding two-

point correlation functions.

SUGRA calculation. In this subsection, we will write down the metric (2.5) in the

Rosen form (2.18)

ds2 =
1

u2
(du2 − 2dx+dx− + aij(x

+)dxidxj) = gµνdxµdxν . (4.1)

The S5 part of the spacetime will be ignored in this section for simplicity. In our case we

have d = 4, but for generality we leave d as a variable in the following. Consider the action

of a scalar field ϕ

S =
1

2

∫

duddx
√−g (gMN∂Mϕ∂Nϕ + m2ϕ2). (4.2)

First we want to solve the equation of motion

¤ϕ − m2ϕ = 0. (4.3)

One has ¤ = ud+1∂u(u−d+1∂u) + u2∆ where

∆ :=
1√
a

[

− ∂+(
√

a∂−) − ∂−(
√

a∂+) + ∂i(
√

aaij∂j)
]

(4.4)

is the d dimensional d’Alembertian operator of the boundary metric and we have denoted

the determinant of the matrix aij by a. Take the ansatz

ϕ = ϕ̃(~k, u)ψ~k
(~x) (4.5)
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and use the technique of separation of variables, we find

ud−1∂u(u−d+1∂uϕ̃) − (k2 +
m2

u2
)ϕ̃ = 0 (4.6)

and

∆ψ~k
= −k2ψ~k

(4.7)

for arbitrary separation constant k2 ∈ R
5. The equation (4.7) has solution

ψ~k
(~x) =

1

a1/4
ei(kix

i−k−x−−β(x+)), (4.8)

where ~k denotes the set (ki, k−, k2),

β̇ =
aij(x+)kikj − k2

2k−
(4.9)

and aij is the inverse matrix of aij. We note that ψk’s form a basis of functions of x. One

can check that
∫

dd~x
√

aψk(~x)ψk′(~x) = 2k−δ(ki + k′
i)δ(k− + k′

−)δ(k2 − k′2). (4.10)

We also have
∫

[dd~k]ψk(~x)ψ∗
k(~y) =

1√
a
δ(x+ − y+)δ(x− − y−)

∏

i

δ(xi − yi). (4.11)

where the measure of integration is
∫

[dd~k] :=

∫ ∞

−∞
dd−2ki

∫ ∞

−∞

dk−
2k−

∫ ∞

−∞
d(k2). (4.12)

The equation (4.6) depends on the separation constant k2. Its most general solution

which is asymptotic to ε2h−ϕ̃0(k
2) is

ϕ̃(k2, u) = Kε(k
2, u)ϕ̃0(k

2), (4.13)

where

Kε(k
2, u) =

ϕ̃(−)(k2, u) + A(k2)ϕ̃(+)(k2, u)

ϕ̃(−)(k2, ε) + A(k2)ϕ̃(+)(k2, ε)
ε2h− (4.14)

is the bulk-boundary Green function. Here h± = (d ± 2ν)/4 and ν := 1
2

√
d2 + 4m2 >

0. ϕ̃(−) is a non-normalizable solution which behaves as u2h− as u → 0, and ϕ̃(+) is a

normalizable solution which behaves as u2h+ as u → 06. A(k2) is an arbitrary coefficient

5Note that here k2 is simply a constant of separation. One may also introduce the inner product

k · k := aij(x
+)kikj − k+k− for some momentum vector k. This object however will not be used at all in

this paper.
6Explicitly, for k2 < 0, we have

ϕ̃
(±)(k2

, u) ∝ u
d/2

J±ν(|k|u). (4.15)

if ν is non-integral. If ν is integral, the two independent solutions are ϕ̃(+) in (4.15) and

ϕ̃
(−)(k2

, u) ∝ u
d/2

Yν(|k|u). (4.16)

Here |k| = +
p

|k2|.

– 17 –



J
H
E
P
0
4
(
2
0
0
6
)
0
1
3

which corresponds to the freedom to specify the vacuum state of the dual field theory,

which is reflected in the freedom to choose different Lorentzian propagator in the dual

theory.

Expanding the scalar field in terms of this basis

ϕ(x, u) =

∫

[dd~k]ψ~k(x)ϕ̃(k2, u), (4.17)

and plugging it into the action, we find

S = − lim
u=ε→0

∫

[dd~k]
(

u−d+1ϕ̃(k2, u)∂uϕ̃(k2, u)
)

. (4.18)

Now consider an operator Õ on the boundary theory which couples to the field ϕ̃0 with

the coupling
∫

[dk]Õ(~k)ϕ̃0(~k). This gives

〈Õ(~k)Õ(~k′)〉 =
δ2S

δϕ̃0(~k)δϕ̃0(~k′)
. (4.19)

Substitute the general solution (4.13) in (4.18), we obtain

〈Õ(~k)Õ(~k′)〉 = −ε−d+1δ(ki + k′
i)δ(k− + k′

−)δ(k2 − k2′)2k− lim
u=ε→0

∂uK(k2, u). (4.20)

The resulting two-point function depends strongly on the coefficient A(k2). We note that

the nontriviality of the metric affects only the eigenfunction ψ~k
(~x), but the modes ϕ̃(±) as

well as the bulk-boundary propagator Kε(k
2, u) as given in (4.14) take exactly the same

form as in the standard AdS case. Thus one can imagine deforming adibatically the metric

back to the undeformed AdS metric and use the same Kε(k
2, u). In that case A(k2) is

chosen via analytic continuation from the Euclidean and it is

lim
u=ε→0

∂uKε(k
2, u) = ε2ν−1k2ν + · · · . (4.21)

Here · · · denotes terms that are of sub-leading order in ε and terms which contain integral

powers in k2, which as usual give rise to contact terms in the correlation function and thus

will be ignored. To go to the coordinate space, we consider the operators

Ô(~x) := a
1
4 (x+)

∫

[dd~k]ψ~k(~x)Õ(~k), (4.22)

ϕ̂0(~x) := a
1
4 (x+)

∫

[dd~k]ψ~k
(x)ϕ̃0(k

2). (4.23)

Note that, different from the usual Fourier transform, we have included an additional factor

of a
1
4 (x+) in front. This is a natural definition in view of the identity

∫

[dk]O(~k)ϕ̃0(~k) =

∫

dxÔ(~x)ϕ̂0(~x). (4.24)

Also our results will turn out to be simpler when expressed in terms of Ô. Using

〈Ô(~x)Ô(~y)〉 = a
1
4 (x+)a

1
4 (y+)

∫

[d~k][d~k′]ψ~k
(~x)ψ~k′(~x

′)〈Õ(~k)Õ(~k′)〉, (4.25)
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it is easy to obtain

〈Ô(~x)Ô(~y)〉 =
c

(Bijδxiδxj − δx−)
d
2
+ν

1

(detBij)
1
2 (δx+)ν+1

, (4.26)

where c is a constant. Here δxi,± := xi,± − yi,±,

Bij :=

∫ y+

x+

dx+aij (4.27)

and Bij is the inverse. If aij is proportional to the unit matrix as in our example (2.41) or

(2.42),

aij = M2δij , (4.28)

then

Bij = δij(f(x+) − f(y+)) := δij · δf, where f(x+) =

∫ x+
dz+

M2(z+)
(4.29)

and

〈Ô(~x)Ô(~y)〉 =
c

((δxi)2 − δx−δf)
d
2
+ν

(

δf

δx+

)ν+1

. (4.30)

This expression reduces to the usual result for flat space when M2 = 1. For the example

(2.41) or (2.42), we have M2 = (x+)α and

f(x+) =
(x+)1−α

1 − α
. (4.31)

Notice that (4.30) is singular if both x+ and y+ approach zero simultaneously (0 < α < 1).

We remark that in general for an operator O with scaling dimension ∆, i.e. under the

transformation (3.29), O transforms as O(x′) = λ−∆O(x), the most general form of the

two-point function that is compatible with the symmetry of the theory is:

〈O(~x)O(~y)〉 = |δx−|∆ g
(

x+, y+,
δxi

√

|δx−|
)

, (4.32)

where g is an arbitrary function. Our result (4.26) as determined by the bulk-boundary

propagator approach is compatible with this for ∆ = d
2 +ν. However (4.26) is more specific

than the kinematical result (4.32). It is a consequence of dynamics.

Field theory calculation. Next we compute the two-point correlation function from

the field theory point of view. Consider a scalar field ϕ which satisfies the equation of

motion

(∆ − m2)ϕ = 0. (4.33)

It has the mode expansion

ϕ =

∫ ∞

0

dk−
√

2k−

∫ ∞

∞
dki (ψ~k

a~k
+ ψ∗

~k
a†~k

), (4.34)
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where ψ~k
is given in (4.7) above and k2 = −m2. The equal time commutation relation

[ϕ(~x),
√

a∂−ϕ(~y)]
∣

∣

∣

x+=y+
= iδ(x− − y−)δ(xi − yi) (4.35)

implies that

[a~k
, a

†

~k′ ] = δ(k− − k′
−)δ(ki − k′

i). (4.36)

Using this, one can easily compute the time ordered (with respect to x+) product 〈Tϕ(~x)

ϕ(~y)〉. We have

G(~x, ~y) := −i〈Tϕ(~x)ϕ(~y)〉 =

∫

[dd~k]
1

k2 + m2 − iε
ψ~k

(x)ψ~k
(y)∗. (4.37)

Here the vacuum is choosen to be anhillated by the operators a~k
. This corresponds to the

choice of the bulk-boundary Green function Kε above in the SUGRA calculation. For the

interests in studying singular spacetime, let us consider the example (2.42) of the metric.

The Green function G can be easily be computed and the result is (for m2 = 0)

G(~x, ~y) =
c

((δxi)2 − δx−δf)
d
2
−1

1

a
1
4 (x+)a

1
4 (y+)

, (4.38)

The additional (factorisable) factors of a suggests one to consider the rescaled field ϕ̂ :=

a
1
4 ϕ. Note that this is the same rescaling appearing above in the definition of the dual

field operators (4.23).

Now we want to compare our SUGRA result and the field theory result. In the usual

case, the form of the two-point function is fixed by the conformal symmetry. In our

case, the scaling symmetry does not fix the form of the two-point function uniquely. So

generally there is no reason to expect the two computations to agree. In fact for an operator

Ô := (ϕ̂)n, the two-point function is

〈Ô(~x)Ô(~y)〉 = (a
1
4 (x+)a

1
4 (y+)G(~x, ~y))n =

c
(

(δxi)2 − δx−δf
)n(d

2
−1)

(4.39)

in the tree level approximation. This is to be compared with (4.30). The factor involving

δf fixes ∆ = n(d
2 − 1). However due to the absence of the term (δf/δx+)ν+1 in (4.39),

(4.30) and (4.39) cannot agree with each other . In particular the singularity structure

is different. It is remarkable that (4.38) is completely regular even when x+, y+ → 0,

while the SUGRA result (4.30) is singular. Note that there is no particle creation in either

the bulk or boundary theory. This can be easily checked following similar computations

as [32, 33]. Hence there is no ambiguity in the two-point functions associated with the

choice of vacuum.

Our interpretation of the result is the following: The SUGRA is a low energy approx-

imation. The singularity at x+ = 0 of the spacetime as revealed by the divergence in R++

and by the two-point function (4.30) is just a low energy description which may be modified

in the full quantum gravity by string loop and α′ effects. As we proposed, the quantum

theory is described in terms of the dual quantum SYM we constructed in section 3. On the

SYM side, the singularity structure of the spacetime, as revealed by the two-point function,

– 20 –



J
H
E
P
0
4
(
2
0
0
6
)
0
1
3

is indeed different. Although the field theory result is computed at weak coupling, there is

reason to expect that it will be able to capture the qualitative behaviour of the spacetime

singularity [23]. (If we choose the plus sign for φ in (41), the string coupling actually goes

to zero at the singularity.) Therefore our result suggests that the singularity is resolved to

some extent. Although our SYM computation is preliminary as we have done it only at the

free and tree level, we believe that the picture and interpretation is basically correct. What

is surprising is that it seems that α′ effects, rather than string loop effects, are sufficient

to smoothen the spacetime singularity. More work is needed on this issue.

4.2 Einstein equation from super Yang-Mills theory

On the supergravity side, Einstein’s equation imposes a constraint (2.17) among the pa-

rameterising functions
1

2
(φ′)2 +

1

2
e2φ(χ′)2 = −h22 − h33. (4.40)

The proposed duality implies that this constraint should also be imposed on the super

Yang-Mills theory. But why? At the classical level, the super Yang-Mills theory is well

defined regardless of the Einstein equations. However, since the duality mixes classical

effects and quantum effects between the dual theories, a super Yang-Mills theory is a

candidate of the dual theory only if it is well defined at the quantum level. One should

demand that all correlation functions of fundamental operators are well defined, and that

the scaling symmetry is anomaly-free.

More specifically, we suggest that Einstein equations are obtained from the super Yang-

Mills theory by demanding the vacuum expectation value (VEV) of the energy-momentum

operator Tµν to be finite. Assuming the duality, 〈Tµν〉 can be computed on the supergravity

side [34]

〈Tµν〉 = − 1

8πGN
lim
ε→0

[

1
ε2

(

−g(2)µν + g(0)µνTrg(2) + 1
2R

(4)
µν − 1

4g(0)µνR
(4)

)

+ log ε
(

−2h(4)µν − T a
µν

)

+ · · ·
]

, (4.41)

where we only listed the diverging part of the VEV. Let us explain the notation. First, ε is

the infrared cutoff at u = ε. The 4D functions g(0), g(2) and h(4) are expansion coefficients

of the metric near the AdS boundary

g(x, u) = g(0) + g(2)u
2 + g(4)u

4 + h(4)u
4 log u2 + O(u5), (4.42)

while g(x, u) is the 4D part of the full metric of the 5D warped metric

ds2 =
R2

u2
(du2 + gµνdxµdxν). (4.43)

R
(4)
µν and R(4) are the Ricci tensor and scalar curvature defined by the 4 dimensional metric

g(0).

In order for 〈Tµν〉 to be finite, both divergent terms should vanish. For the background

solutions in which the u dependent terms are suppressed, g(2) and h(4) vanish. The loga-

rithmic divergent term vanishes automatically. The vanishing of the 1/ε2 term implies the
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4 dimensional Einstein equation

R(4)
µν − 1

2
g(0)µνR(4) = 0 (4.44)

(for µ, ν = +,−, 2, 3). This is the source-free equation because neither dilaton nor axion

was included in (4.41). It is straightforward to repeat the computation of [34] to include

contribution of generic matter fields, and, of course, the final result is to give the correct

Einstein equation with sources.

We remark that the 4D Einstein equation for the boundary is in general not equivalent

to the 5 dimensional Einstein equation with a negative cosmological constant (flux). How-

ever, the 4D Einstein equation happens to agree with the 5D Einstein equation for a class

of backgrounds including the ones under consideration. In fact, only the (++)-component

of the 4D Einstein tensor is nontrivial G++ = −h22 − h33. For SUGRA backgrounds with

generic r-dependence in g(r, x), the 5D SUGRA equations correspond to the RG equations

in the field theory [35].

This argument is so far incomplete because the energy momentum tensor computed

above was based on the validity of the duality. In general the duality may not hold when

the Einstein equation is not valid, in which the later is precisely what we want to check.

Thus we have to check independently that the VEV of the SYM energy-momentum tensor

is indeed given by (4.41). It has been argued in [32] that 〈Tµν〉 = 0 for a free theory. It is of

course not the case for our time-dependent SYM. Consider a Yang-Mills theory coupled to

fermions living on a base space with a generic metric g̃. The vacuum expectation value of

the energy-momentum tensor generically has UV divergences which need to be regularized

in a diffeomorphism-invariant way. By a simple power counting, one can see that 〈Tµν〉 has

potentially a quartic, a quadratic and a logarithmic divergence. By dimensional analysis,

the quartic divergence is a constant times the cut-off (Planck) scale M4
P . This is just

the cosmological constant contribution from each quantum field. It is well-known that it

cancels for a supersymmetric field theory. The quadratic divergence must be of the form

(aR̃µν + bg̃µνR̃)M2
P (4.45)

with some numerical constant a, b. The precise form may depend on the regularization

scheme. However, one should regularize it so that this vacuum energy-momentum tensor

is conserved. This implies that it is proportional to the 4D Einstein tensor, so that its

effect can be absorbed by renormalizing the 4D Newton constant. The logarithmically

divergent term is not of interest for the purpose of this paper. The finite part of 〈Tµν〉 has

been extensively studied in the context of conformal/Weyl anomaly [36]. A more detailed

studies of these shall be interesting.

5. Discussion

In this paper we have compared the two-point functions computed at different regimes of

the t’Hooft coupling. We find that the two-point function is not protected by nonrenor-

malization theorem and the SUGRA result is different from the gauge theory result. Since
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our gauge theory is supersymmetric, it is plausable that there will exist some modified

form of nonrenormalization theorem. It is important to establish their existence and to use

them to compute quantities that are nonrenormalized. Such quantities will allow one to

compare field and SUGRA calculations directly and thus provide a check of the proposed

gravity/gauge duality for the time dependent background.

In the usual AdS/CFT correspondence, the scaling symmetry of the AdS background

implies that the dual gauge theory is conformal. Given that the conformal symmetry is

preserved at the quantum level, this conformal symmetry has been a powerful tool for

analysing the field theory and providing valuable understanding of the duality. In our case,

let us denote the 4D energy-momentum tensor by Tµν . The usual scaling symmetry (3.32)

corresponds to the statement that T µ
µ = 0. This is no longer true for us. The Noether

current of the new scaling symmetry (3.29) is

Jµ ≡ δxνT µ
ν , δxµ = aµxµ, (5.1)

where underlined indices are not summed over and aµ = (a+, a−, a2, a3) = (0, 2, 1, 1). The

corresponding conservation law ∇µJµ = 0 then implies that

(∇µδxν)T µ
ν = 0. (5.2)

To derive it, we have used the energy-momentum conservation law ∇µT µ
ν = 0. It would

be interesting to derive the trace anomaly for our SYM theory, which would provide a

valuable test to the correspondence we proposed. We expect that some of the techniques

for quantum field theory in curved spacetime can be used here and the problem may become

tractable at least if one treats h and χ as small perturbations.

Apart from its possible role in holographic duality, by itself the time dependent super

Yang-Mills theory introduced in this paper is already a very interesting field theory because

of the time-dependent gauge and axion couplings and its untypical scaling symmetry (3.29).

The new scaling symmetry suggests us to look for a new renormalization group different

from the usual definition associated with a uniform scaling in all dimensions. Comparing

it with the scaling symmetry of our supergravity solutions (2.23), we see that this new

renormalization group should be one which has a dual interpretation on the supergravity

side. Further work is necessary in order to elucidate these aspects in more detail.

The class of solutions which gives a geodesically incomplete spacetime is of interest for

the studies of cosmological singularity. From our preliminary analysis above of the two-

point functions, it is suggested that the spacetime structure as seen from the gauge theory

is different from that seen by the classical gravity solution. In fact from the gauge theory

point of view, the spacetime appears to be non-singular. It is important to analyze the

quantum gauge theory in greater details (particularly by including interactions) in order to

be more confident about this picture and also to learn about how the spacetime singularity

is resolved from a spacetime point of view, and to see what kind of interesting structures

(e.g. quantum symmetries) may appear on the way.

This paper is only the first step in establishing the connection between time-dependent

backgrounds in string theory and gauge theory. There are still many important open ques-

tions. For example, as we mentioned at the end of section 3.2, the matching of functional
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parameters for the duality may be corrected by terms of higher order in α′. More impor-

tantly, we hope to be able to understand better the quantum properties of the gauge theory

and use it to learn about time-dependent processes in string theory.
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